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Abstract

Ridges are one of the key feature of interest in areas such as computer vi-
sion and image processing. Even though a significant amount of research has
been directed to defining and extracting ridges some fundamental challenges
remain. For example, the most popular ridge definition (height ridge) is not
invariant under monotonic transformations and its global structure is typically
ignored during numerical computations. Furthermore, many existing algorithm
are based on numerical heuristics and are rarely guaranteed to produce consis-
tent results. This paper reexamines a slightly different ridge definition that is
consistent with all desired invariants. Nevertheless, we show that this definition
results in similar structures compared to height ridges and that both formula-
tions are equivalent for quadratic functions. Furthermore, this definition can
be cast in the form of a degenerate Jacobi set, which allows insights into the
global structure of ridges. In particular, we introduce the Ridge-Valley graph as
the complete description of all ridges in an image. Finally, using the connection
to Jacobi sets we describe a new combinatorial algorithm to extract the Ridge-
Valley graph from sampled images guaranteed to produce a valid structure.

1. Introduction

Ridges, often described intuitively as the crests connecting mountain peaks,
are some of the most sought after features in areas ranging from computer vi-
sion [1, 2] and image processing [3] to tensor analysis [4, 5] and combustion
simulations [6]. Consequently, defining and extracting ridges from digital data
has received significant attention across different communities resulting in var-
ious competing concepts and a plethora of algorithms. Here, we are concerned
with ridge extraction from two-dimensional images, one of the oldest problems
in data analysis. Nevertheless, despite significant efforts, fundamental theo-
retical as well as practical problems remain. On the theoretical side, a set of
five characteristics desirable in ridges are defined [3], yet the most commonly
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used definition violates one of them. Furthermore, one of these characteristics
is the desire for an entirely local definition and traditional algorithms typically
disregard the expected global structure of ridges. However, without a clear un-
derstanding of the desired outcome evaluating and validating algorithms that
extract ridges remains subjective and ad-hoc. To address these shortcomings
additional algorithms and heuristics have been developed to filter and post-
process the results of the initial extraction. Again, without knowledge of the
expected outcome designing such frameworks is challenging.

In this paper we revisit an often neglected definition of ridge, which we will
refer to as Jacobi ridges, that observes all five desired invariants. Jacobi ridges
can be expressed as a Jacobi set of a function and its gradient magnitude,
which provides insight into their global structure. This connection allows us
to introduce the Ridge-Valley graph, a global representation of all ridges. The
Ridge-Valley graph reveals necessary invariants that can be used to guide and
validate ridge extraction algorithms. More importantly, the connection to Ja-
cobi sets allows us to define an equivalent concept of ridges for piecewise linear
functions and a new combinatorial algorithm to extract Ridge-Valley graphs.
The resulting framework is easy to compute and is numerically more robust,
due to its combinatorial nature. Our algorithm, for the first time, guarantees
the extraction of a valid ridge structure equivalent to that of a smooth function.
Similar to the Morse-Smale complex for topological information, the Ridge-
Valley graph promises a deeper understanding of the nature of the examined
ridges and more effective algorithms to extract them.

1.1. Related Work

The study of ridge-lines actually begins with the examination of valley-lines
discussed in a paper by De Saint-Venant in 1852 [7] describing “courses” (val-
leys). De Saint-Venant’s definition, when followed to its furthest extent are the
Jacobi ridges, that this paper examines. Since then, numerous authors have
addressed the issue often in confusing and contradictory ways. This histori-
cal body of work includes Boussinesq [8, 9], Breton de Champ[10], Jordan [11]
and Rothe [12] and we encourage the reader to review Koenderink and van
Doorn’s [13] excellent overview.

The modern day results of these efforts are multiple ridge definitions that,
while related, are not equivalent. Eberly et al. [3] discuss some of the more
notable variants in great detail and also lays out a locality property and four
general invariants that an ideal ridge definition should fulfill, see Section 2. In
modern applications, the height ridge definition introduced by Haralick [14] and
extended by Eberly et al. [3] has become the most prevalent. It is used in a
large number of applications in a variety of areas despite not satisfying one
of the desired properties. Furthermore, in a rarely cited paper, Damon [15]
introduces ridge-valley-connector-curves which describe the global structure of
height ridges similar to our Ridge-Valley graph for Jacobi ridges.

Based on this theory, there exists an extensive collection of algorithms to
extract (height) ridges and even a cursory review is beyond the scope of this
paper. For a detailed discussion on some of the more popular approaches, we
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refer the reader to [16, 2, 17, 18, 19]. It has been previously noted that all of
the ridges and valleys in the height ridge definition, must be points where the
gradient of the height function and the gradient of the gradient magnitude are
aligned [13, 17, 20, 19], but the subtle consequences of this observation have
not been examined. In particular, Sadlo and Peikert [19] extract these points
as “raw features” using a level set extraction and filter the results to produce
ridges and valleys. However, level set extraction will always produce closed
loops while true ridge-valley lines intersect at all critical points. As discussed
in [19] correcting the global structure is difficult and the algorithm presented
here avoids all such problems.

Another class of techniques use scale space to extract ridges at the approri-
ate length scale [2]. These approaches avoid some of the numerical instabilities
in approximating eigenvalues and eigenvectors by convolving the functions with
various low-pass filters. However, such filters can change the geometric loca-
tion of the resulting ridges and similar to the techniques discussed above the
result must often be post-processed to correct inconistencies. Instead, we show
that Jacobi ridges can be expressed as non-generic Jacobi sets, which implies a
rigorous global structure akin to the connector curves. Jacobi sets have been
introduced by Edelsbrunner and Harer [21] as the set of points at which the
gradients of two (or more) functions are aligned. Furthermore, they introduced
a simple combinatorial algorithm to extract Jacobi sets for piecewise linear data.
Mascarenhas et al. [22] show how Jacobi sets can be used to track critical points
in time-dependent simulations and Natarajan et al. [23] derive a new similarity
metric based on Jacobi sets. Luo et al. [24] extract an approximate Jacobi set
from point cloud data to extract features from molecular surfaces as well as
contours of geometric models. In this paper, we utilize a recent extension to
the original algorithm [25] which considers a previously ignored property of the
Jacobi set and in our application produces qualitatively better results. Further-
more, we demonstrate how to adapt the algorithm to handle non-generic Jacobi
sets, in order to enforce the global structure of ridge lines. Our contributions in
detail are:

1. An examination of the Jacobi ridge definition which fulfills all desired
invariants and rigorous comparisons to the height ridge definition;

2. A formulation of Jacobi ridges in the form of a non-generic Jacobi set;
3. Introduction of the Ridge-Valley graph, a new structure describing the

global structure of Jacobi ridges; and
4. A new combinatorial algorithm to extract Jacobi sets for two non-generic

functions guaranteed to produce the correct structure.

2. Background

In this paper we are concerned with ridge- and valley-lines of a two-dimensional
function f . For simplicity of the presentation we will assume f : R2 → R, but
the results could be extended to more general two-dimensional manifolds. As
will become apparent, the definition of ridges and valleys is symmetric and for
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brevity we will restrict much of the discussion to the case of ridges, but all re-
sults equally apply to valleys. Throughout the paper we use ∇f to denote the
gradient of f , H to denote the Hessian matrix of f , and R to denote the rotation
operator, that will rotate a vector 90o in the counter-clockwise direction.

In their seminal paper, Eberly et al. [3] compare several definitions of ridges,
extend Haralick’s “height” definition [14] into multiple dimensions, and estab-
lish a set of desired invariants for ridge definitions. Their conclusion is that the
so-called height ridges produce qualitatively superior results. This sentiment
appears to be wide spread since height ridges are a commonly used ridge struc-
ture [3, 18, 26, 20, 27]. However, Eberly et al. also note that this particular
definition does not satisfy invariance under monotonic transformations, while
other definitions satisfy all the desired invariants. In this section, we review the
set of invariants and the definition of height ridges, and extend the classification
by introducing pseudo-ridges/-valleys. According to [3] a ridge of f should be:

1. defined locally, using only information in a given ε-neighborhood
2. invariant under translations in the spatial variables;
3. invariant under rotations in the spatial variables;
4. invariant under uniform magnification in the spatial variables; and
5. invariant under monotonic transformations of f .

All of these invariants are of practical importance since they are required for a
localized algorithm invariant to spatial transformations as well as invariant to
common transformations of f such as, for example, a logarithmic scaling.

The definition of a height ridge uses the directions of highest and lowest
curvature (which are the eigenvectors of H) and their relation to the gradient.
To streamline the discussion in Section 3.1 we first define a set of height points
that are subsequently classified further:

Definition 2.1 (Height Point). A point x ∈ R2 is called a height point if
∇f(x) 6= 0, λ1, λ2 6= 0, λ1 6= λ2 eigenvalues of H(x), and H(x)∇f(x) = λ∇f(x)
for some λ ∈ R.

Intuitively, the set of height points are the points in R2 where the gradient is
aligned with one of the directions of principal curvature of the graph of f . By
excluding points with a zero gradient and points with an eigenvalue of zero or a
higher multiplicity eigenvalue, the set of height points is an open set with these
special points as boundary. Ridges and valleys are certain subsets of height
points:

Definition 2.2 (Height Ridges/Valleys). Let x ∈ R2 be a height point and
λ1 < λ2 be the eigenvalues of H(x). If H(x)∇f(x) = λ2∇f(x) then x is part
of a height ridge for λ1 < 0 and part of a height pseudo-valley for λ1 > 0.
Symmetrically, if H(x)∇f(x) = λ1∇f(x) and λ2 > 0 then x is on a height
valley and on a height pseudo-ridge for λ2 < 0, see Table 1.

Intuitively, a point is classified as height (pseudo-)ridge if f has a local maximum
in the direction orthogonal to the gradient. Furthermore, if the gradient is
aligned with the direction of maximal curvature x is called a ridge otherwise
x is called a pseudo-ridge. Symmetrically, (pseudo-)valleys are points at which
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Height Classification Alig. of ∇f Eig.values of H
ridge point H∇f = λ2∇f λ1 < 0
valley point H∇f = λ1∇f λ2 > 0
pseudo-ridge point H∇f = λ1∇f λ2 < 0
pseudo-valley point H∇f = λ2∇f λ1 > 0

Table 1: The classification of a height point according to the eigenvalues λ1 < λ2 of H.

f is locally minimal orthogonal to the gradient and valleys have the gradient
aligned with the direction of minimal curvature1.

In practice, one is typically only interested in either the ridges or the valleys.
However, as will be discussed in Section 4, pseudo-ridges/valleys play an im-
portant role in understanding the global structure of ridges/valleys in general.
While the height ridge definition closely follows human intuition and satisfies
properties 1-4, it is not invariant under monotonic transformations of f . As
in [3], consider the example f = 1−x2−2y2 and the monotonic transformation
h = ln(1 + t): The point (1, 0) is part of a height ridge of f , but not of h ◦ f .

3. Jacobi Ridges

As discussed above, height ridges are a commonly used definition even
though they are not invariant under monotonic transformations. This section
introduces a new formulation of ridges and valleys closely related to one origi-
nally presented by De Saint-Venant in 1852 [7]. Subsequently, we demonstrate
that the new definition observes all five characteristics, yet is (perhaps surpris-
ingly) close to the height ridge definition. In the following discussion, we will
use g = ||∇f ||2 to indicate the squared gradient magnitude of f and define
L(x) = f−1(f(x)) as the level set of f incident to x. As before, we first define
a set of candidate points:

Definition 3.1 (Jacobi Points). A point x ∈ R2 is called a Jacobi point if
∇f(x) 6= 0 and for ~t = R∇f (the vector tangent to L(x)) and γ a parametriza-

tion of L(x) we have: ∂2f

∂~t2
6= 0 and ∂

∂sg(γ) = 0 and ∂2

∂s2 g(γ) 6= 0.

Intuitively, Jacobi points are points where the gradient magnitude restricted to
a level set of f is either maximal or minimal. Note that, ∂f

∂~t
= 0 is true by

definition and ∂2f

∂~t2
6= 0 removes the points with zero level set curvature. Again

the set of Jacobi points forms an open set whose boundary are points with zero
gradient, points with zero level set curvature, and the inflection points of g
restricted to level sets of f . Jacobi points are classified further according to the
behavior of f tangentially to its level sets:

Definition 3.2 (Jacobi Ridges/Valleys). Let x be a Jacobi point of f then x
is part of a Jacobi pseudo-ridge (ridge) if g is maximal (minimal) along L(x)
and f is maximal tangent to L(x) . Symmetrically, x is part of a pseudo-valley

1These form the ridges, valleys, r-, and v-connectors of [15]
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(valley) if g is maximal (minimal) along L(x) and f is minimal tangent to L(x).

Jacobi Classification Along L(x) Tangent to L(x)
ridge point min of g max of f
valley point min of g min of f
pseudo-ridge point max of g max of f
pseudo-valley point max of g min of f

Table 2: The classification of a Jacobi point x ∈ R2 according to the behavior of g along level
sets and f tangentially to the level sets.

The intuition behind Jacobi ridges is based on walking around a mountain top
along a level set. One encounters points where the terrain is least/most steep,
which are the points along ridges/pseudo-ridges.

An important fact to observe is that Jacobi ridges satisfy all five of the
desirable properties: Clearly, the definition is local and invariant under spatial
translations and rotations. Spatial magnification is equivalent to uniformly
scaling the gradient, which does not affect the existences or classification of
extrema of g along level sets of f . Finally, we can prove the following lemma:

Lemma 3.3. Jacobi ridge points and their classifications are invariant under
monotonic transformations of f .

Proof Let h : R→ R be a monotonic transformation with h′ > 0 and φ = h◦f
be the transformed f . Then ∇φ(x) = h′(f(x))∇f(x). For each level set Lf
of f at value a there exists an equivalent level set Lφ of φ at h(a) such that
Lf = Lφ. By definition, f is constant along Lf , h′(f(x)) is constant and thus
for c = h′(f(x)) we have that ||∇φ||2 = c2||∇f ||2 along Lf . Since, multiplying
||∇f ||2 with a constant factor will not change the location of extrema, Jacobi
points and classifications are invariant under monotonic transformations.

3.1. Comparison

Given that the two definitions are established using different intuitive cri-
teria and the fact that, unlike height ridges, Jacobi ridges are invariant under
monotonic transformations, one would expect the two ridge definitions to be
quite different. However, they are more similar than one might expect. The fol-
lowing lemma shows that the points identified by both definitions are generally
the same.

Lemma 3.4. Let Cheight and CJacobi be the closure of all height and Jacobi
points respectively and C = {x ∈ R2|(∇f(x))TH(x)(R∇f(x)) = 0}. Then,
Cheight = CJacobi = C.

Proof For height points this is true by construction. Clearly, the critical points
of f are in CJacobi and in C. For the remaining Jacobi points we have ∂

∂sg(γ) =

0. Let γ(s) be a parametrization of the level set of f such that ∂
∂sγ = R∇f .

Differentiating g with respect to s results in

∂

∂s
g(γ) =

∂

∂s

(
∇fT∇f

)
= 2∇fTH(f)γ′(s) = 2(∇f)TH(f)(R∇f).

which proves the lemma.
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Lemma 3.4 shows that the two definitions result in the same set of points up to
closure. It also shows that when the magnitude of the gradient is maximized
or minimized on a level set of f , then the gradient is an eigenvector of the
Hessian. However, it makes no guarantees about the ordering of the eigenval-
ues of the Hessian. This is the primary difference between the two definitions.
The distinction between a pseudo and non-pseudo point in the height definition
depends on the ordering of the eigenvalues, while the Jacobi definition distin-
guishes based on whether the gradient magnitude is maximized or minimized.
Since, a monotonic transformation can change the ordering of the eigenvalues
of a Hessian it can change the classification of the height points, explaining why
the Jacobi ridge definition is invariant under monotonic transformations, while
the height definition is not.

In both definitions, the determination of the ridge/valley property is iden-
tical. At a height or Jacobi point the vector tangent to the level set is an
eigenvector of the Hessian, thus the sign of the eigenvalue determines if that
point is a maximum or minimum of f tangent to the level set. We also note
that the sign of the level set curvature defined as

LSC = −∇ · ∇f
||∇f ||

= − (R∇f)THR∇f
||∇f ||3

=
λR∇f
||∇f ||

(1)

will also determine whether a point is ridge or valley. Thus, we find that the
only difference in the two definitions relies on the classification of the points
that satisfy the equation (∇f)TH(f)(R∇f) = 0. In particular, it can be shown
that both classifications agree for quadratic functions.

Additionally, we note that the differences in classifications also affects how
the classifications transition along the height/Jacobi points. Since f is smooth,
the classification cannot change within connected subsets. Consider the height
definition: A sequence of ridge/valley points can transition to a sequence of
pseudo-ridge/valley points or vice versa by passing through a point where the
eigenvalues of H are equal. The same transition can occur in the Jacobi defini-
tion, but at points where ∂

∂sg = 0. Generically, these points are not the same,
with a notable exception if f is quadratic.

Additionally when height/Jacobi points run through a point with a level set
curvature of 0 (the eigenvalue of the tangent eigenvector is 0), they can change
classification. In this case, however, there are significant differences. In the
height definition, points will generically transition from ridge to pseudo-valley,
or from valley to pseudo-ridge. In the Jacobi definition points transition from
ridge to valley or pseudo-ridge to pseudo-valley. Table 3 briefly describes how
and when the classification can change. We note that, generically, the height
definition does not allow a (pseudo-)ridge to (pseudo-)valley transition and that
the Jacobi definition does not allow a ridge/valley to pseudo-valley/pseudo-ridge
transition. For a more complete description of height ridge structure we refer
the reader to [15].

7



Transition Height Jacobi
ridge ↔ pseudo-ridge

λ1 = λ2
∂
∂sg = 0

valley ↔ pseudo-valley
ridge ↔ pseudo-valley

λ1 or λ2 = 0 -
valley ↔ pseudo-ridge
ridge ↔ valley

- λ1 or λ2 = 0
pseudo-ridge ↔ pseudo-valley

Table 3: A description on how the classification of height points and Jacobi points can tran-
sition. In both cases the pseudo/non-pseudo classification can switch, but under different
conditions. For height points the eigenvalues must be equal, and for Jacobi points g must
have an inflection point on a level set of f . At points where an eigenvalue is zero, either
definition can switch classification, however the type of switch is different.

4. Ridge-Valley Graph

In this section we will show how the Jacobi definition of ridges can be ex-
pressed as a non-generic Jacobi set and use the resulting insights to define the
Ridge-Valley graph, encoding the global structure of ridges and valleys. We first
briefly introduce Jacobi sets for two functions on a two-dimensional manifold
M and refer the reader to [21] for a more in depth discussion.

A point of f is called critical if the gradient at that point is zero. A critical
point p of f is called degenerate if its Hessian matrix is singular. Furthermore,
f(p) is called a critical value of f , with a regular value referring to a non-
critical value. A smooth function is called Morse if all its critical points are
non-degenerate and have pair-wise distinct function values. Finally, two Morse
functions f and g are called generic if they do not share critical points. We are
interested in two Morse functions f and g and in particular in the restrictions
of g to level sets of f . For a regular value t ∈ R the level set f−1(t) is a smooth
1-manifold and the restriction of g to this level set is a smooth function gt. We
can now define the Jacobi set of two Morse functions as:

Definition 4.1. The Jacobi set J(f, g) is the closure of the set of critical points
of gt :

J(f, g) = cl {x ∈M|x is critical point of gt} ,

for some regular value t ∈ R.

The closure operations adds the critical points of g restricted to the level sets at
critical values t as well as critical points of f , which form singularities in these
level sets. The definition is symmetric J(f, g) = J(g, f) and results in a set of
smoothly embedded 1-manifolds, see [21].

Considering Definitions 3.1 and 4.1 it is easy to see that the closure of all
Jacobi points is the Jacobi set J(f, g) of f and g = ||∇f ||2. Since all critical
points of f are minima of g the two functions are not generic and to emphasize
this fact we will call their Jacobi set non-generic. The main consequence of
the shared critical points is that at critical points of f the smooth embedding
theorem does not hold.
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(a) (b)

Figure 1: Contours of two quadratic minima
with the jacobi set shown as thick lines and
the minima and the birth-death points drawn
as circles. As the two minima approach each
other (a), the birth-death point approaches as
well. (b) When the minima become co-located,
the birth-death point also become co-located
resulting in a valence four point.

To analyze the Jacobi ridge struc-
ture in the neighborhood of critical
points of f it is helpful to study the ef-
fects of two critical points of two func-
tions approaching each other. Fig-
ure 1(a) shows the level sets of two
quadratic minima and their Jacobi
set. The Jacobi points are shown as
lines with their boundary points in-
dicated by circles. Initially, the top
component of the Jacobi set contains
the minima of both functions while
the bottom component contains an
inflection point of one restricted to
level sets of the other, also called a
birth-death point. In the non-generic
situation of a shared critical point both minima and the birth-death point be-
come co-located and create a valence four node in the Jacobi set, see Figure 1(b).
We formalize this result for the Jacobi set of f and ||∇f ||2 with the following
theorem.

Theorem 4.2. Let f be a smooth function such that at all critical points of f
the Hessian has distinct, non-zero eigenvalues. Then the Jacobi set J(f, ||∇f ||2)
will have valence four at all critical points of f .

Proof Let g = ||∇f ||2 then J(f, g) is also defined as the 0 level set of (∇g)T (R∇f).
We will prove the theorem by showing that at critical points of f this function
has a saddle point with function value 0 and a non-degenerate Hessian.

Wlg. let f have a critical point at the origin with eigenvectors of the Hessian,
H, aligned with the coordinate axes. Since f is Morse, it can be approximated by
a quadratic near a critical point of f . Thus near the origin f ≈ ax2 + by2. With
a few minor calculations we find ∇g =

〈
8a2x, 8b2y

〉
and R∇f = 〈−2by, 2ax〉

which leads to (∇g)T (R∇f) = (−16a2b + 16ab2)xy. It is easy to see that
(∇g)T (R∇f) has a saddle of function value 0 at the origin. As a and b are
distinct and non-zero, the Hessian of (∇g)T (R∇f) will be non-degenerate, thus
proving that the level set (∇g)T (R∇f) = 0 will have valence four at the origin.

We note that requiring f to be a Morse function is not sufficient to satisfy
Theorem 4.2, however any Morse function can be perturbed such that it re-
mains Morse and meets the requirements in the theorem [15]. Combining the
discussion above we define the Ridge-Valley (RV) graph as the Jacobi set of f
and ||∇f ||2 and can derive several interesting global properties:

Definition 4.3 (Ridge-Valley Graph). Given a Morse function f such that
at all critical points of f the Hessian have distinct, non-zero eigenvalues, the
non-generic Jacobi set J(f, ||∇f ||2) is called the Ridge-Valley graph of f .

The RV graph of f consists of a collection of arcs and nodes such that:

1. Arcs are open, smoothly embedded 1-manifolds;
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2. Nodes are the critical points of f which have valence four and points at
which the Jacobi classification switches which have valence two;

3. Arcs have a consistent classification as (pseudo-)ridge or (pseudo-)valley;
4. At maxima/minima of f pseudo-ridges/-valleys cross ridges/valleys; and
5. At saddles of f ridges and valleys cross.

Property (1) and (2) follow directly from the definition of Jacobi sets and The-
orem 4.2. Similarly, (3) is a consequence of the classification of Jacobi points.
For (4) we note that certainly the level set curvature in an ε neighborhood of
a maximum is positive and thus all incident arcs are classified ridge or pseudo-
ridge. Since, on the level set around a maximum of f , g must alternate between
maxima and minima property (4) follows. Similarly, for (5), the well-known
level set structure around a saddle guarantees four lines alternating valley- and
ridge-types (positive and negative level set curvature). Furthermore, as the
ridges/valleys approach the saddle the gradient magnitude approaches 0 which
guarantees a minimum of g along the level set from which property (5) follows.

Similar to the ridge-valley-connector-curves of [15] for height ridges, the RV
graph provides insight into the global structure of Jacobi ridges and valleys.
Confirming the human intuition, ridges of two-dimensional functions are lines
and are pair-wise disjunct. The second property combined with the valence
four structure around critical point has an important non-intuitive consequence:
Even at local maxima of f ridges cannot merge. Intuitively, one might expect
multiple ridges to be incident to the same maximum just as mountain crests
(the typical mental image for ridges) can converge to a single peak. According
to Theorem 4.2 this is generally not possible for ridges of Morse functions.
This insight reveals a fundamental problem with ridge detection algorithms that
classify individually pixels. By classifying single points as ridge/non-ridge one
must, on the one hand create unbroken lines suggesting a loose classification,
on the other hand one is not allowed to create any non-valence two structures
suggesting a conservative classification. Deciding the correct connections is a
global problem difficult to solve with local heuristics.

5. Algorithm

In this section we will describe how the concepts for smooth functions dis-
cussed above can be applied to sampled functions. First, we will use the con-
nection to Jacobi sets to create a new combinatorial algorithm to extract the
set of Jacobi points from piecewise linear functions. Second, we show how to
extend the traditional algorithms for Jacobi set extraction to handle non-generic
functions in order to construct a provably consistent Ridge-Valley graph.

5.1. Jacobi Sets on Piecewise Linear functions

Edelsbrunner and Harer [21], using the concept of Lagrangian Multipliers,
show that the points of the Jacobi set are equivalent to the points where the
gradients of f and g are linearly dependent (∇g + λ∇f = 0 or ∇f + λ∇g=0).
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Defining hλ = g + λf with ∇hλ = ∇g + λ∇f leads to an alternative definition
of the Jacobi set:

Lemma 5.1 (Jacobi Set). The Jacobi set J(f, g) of two generic Morse functions
f and g is equivalent to the set

J(f, g) = {x ∈M|∃λ ∈ R s.t. x is a critical point of

hλ = g + λf , or x is a critical point of f}

With a slight abuse of notation one can assume h±∞ = ±f and define the Jacobi
set as the set of critical points of the one-parameter family of functions defined
by h. Alternatively, this set can be described as the paths the critical points
of hλ take as λ is swept from −∞ to ∞. Following the standard approach [28,
29], critical points of a piece-wise linear function can be defined by classifying
their edges into upper and lower star and counting the components of their
boundaries. Clearly, an edge e = uv will switch its classification only once at
λe = (g(u)−g(v))/(f(v)−f(u)) and using simulation of differentiability [21] we
can assume these flips are ordered and occur at distinct λ values. Consequently,
the Jacobi set can be constructed by tracking critical points through the discrete
changes in λ and here we use the algorithm proposed in [25] to construct the
Jacobi set as a collection of non-intersecting one-manifolds.

5.2. Combinatorial Ridge-Valley Graphs

As discussed in Section 4, the ridge-valley graph is a degenerate Jacobi set
of f and g = ||∇f ||2. We use the piecewise linear formulation of Jacobi sets
to compute the ridge-valley graph for a piece-wise linear function f and g,
where g is constructed by any of the existing gradient estimation schemes. For
example, many computer simulations internally express f using higher order
interpolations techniques and g can be evaluated from these interpolations.

Both techniques discussed above will extract a set of 1-manifolds as they
are designed for Jacobi sets of generic Morse functions. The RV graph is a
degenerate Jacobi set and has a more varied structure as discussed in Section
4. Thus, we modify the techniques in order to ensure the proper structure.

Additionally, in the Jacobi set computation f and g are both considered to
be piecewise linear, which can potentially lead to inconsistencies between the
relationship of f and g, specifically at the critical points of f . Thus the value
of g and the level set curvature are set explicitly at critical points of f and
the valence four criteria is enforced, when not met. The following subsections
describe how these inconsistencies are remedied in order to preserve the correct
structure of the RV Graph.

5.2.1. Co-locating Critical Points

Approximating the gradient magnitude numerically does not guarantee min-
ima of g at all critical points of f . A first order adjustment is to set g = 0 for all
critical points of f . However, even enforcing g > 0 for all non-critical vertices of
f using, for example, symbolic perturbation does not yet guarantee the desired

11



structure. There can exist edges of T connecting critical points of f . Since, two
minima of g cannot be connected by an edge we choose to split the edge and
introduce a new vertex separating the two critical points. Thus, we guarantee
that all critical points of f are also minima of g.

5.2.2. Edge Classification

The detection of Jacobi points is equivalent to finding edges in the Jacobi
set of f and g = ||∇f ||2. However, the classification of edges as (pseudo-
)ridges/valleys as described in Definition 3.2 remains to be determined. As
shown in Table 2, there are two criteria to classify a Jacobi point x: whether
g(x) is a maximum or minimum along a level set of f , and whether f(x) is a
maximum or minimum tangent to the level set.

u v

a

b

L(a)

Conveniently, the first criterion is handled implicitly during
the computation of the Jacobi set. Consider the edge uv shown
on the right and let L(a) be the level set of one of its neighbors.
If uv is parametrized from t ∈ (0, 1) then L(a) intersects at t =
f(a)−f(u)
f(v)−f(u) . Comparing the value of g at the intersection to the

value of g at the vertex a leads to:

g(t) = g(u) + (g(v)− g(u))t < g(a)

⇔ g(u)− g(a) + (g(v)− g(u)) f(a)−f(u)f(v)−f(u) < 0

⇔ g(u)− g(a) + λuv(f(u)− f(a)) < 0

⇔ g(u) + λuvf(u)− (g(a) + λuvf(a) < 0

⇔ hλuv (u) < hλuv (a)

Note that, L(a) might intersect the line outside of uv. Nevertheless, since f and
g are linear on the triangle uva, the comparison remains valid as there are no
restrictions on the value of t. Thus if hλuv

(a), hλuv
(b) > hλuv

(u), then uv is a
minimum of g on level sets of f and is classified as non-pseudo.

As discussed in Section 4, whether f has a maximum or minimum tangent
to the level set is equivalent to determining the sign of the level set curvature,
(Eqn. (1)). Using any existing curvature estimation techniques each vertex in
the triangulation T is given a value for level set curvature and the curvature of
each edge is defined as the average of the values of its vertices. Depending on
the sign each edge is classified as ridge or valley.

From Equation (1) it is clear that for critical points of f , the level set cur-
vature is undefined. Level set curvature approaches infinity as one approaches
a maximum and negative infinity for a minimum and either positive or negative
infinity for a saddle depending on whether the saddle is approached from above
or below. In order to maintain consistency, the values of the level set curvature
at critical points of f are assigned ±∞ with the sign on the saddle dependent
upon the approach. With these values specifically assigned, all edges bordering
a maximum (minimum) will have positive (negative) curvature giving all edges a
ridge (valley) classification. An edge of a saddle point will be give a ridge/valley
classification if the edge’s other vertex is higher/lower than the saddle point.
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5.2.3. Valence correction

The unfolding processes in [21, 25] will create a set of non-intersecting loops
from the Jacobi edges. However, as discussed above, the RV graph of a Morse
function contains loop intersections at critical points of f indicated by valence
four nodes. Thus at critical points of f we must modify the unfolding process
to establish the structure of the RV graph.

The cases of extrema and saddles are handled separately. For each extrema p
of a piecewise linear f , there exist three cases: (i) p is incident to four; (ii) more
than four; or (iii) two Jacobi edges. In case (i) no correction is needed. For case
(ii) we note that in [21] it is shown that p must have an even valence and any
perturbation of f will split a higher valence extremum into a valence four plus
additional birth-death points. We emulate this perturbation by pairing adjacent
edges, considering them no longer incident to p, until only four unpaired edges
remain which form the proper valence four extremum. To correct case (iii)
we note that there exist two possible explanation for a valence two extremum.
First, it is known that ridges and pseudo-ridges off of an extrema can form a
loop (see Figure 4 in Section 7 for an example). In a sampled function, this loop
may be too small to appear in the mesh and thus the extrema is left with two
Jacobi edges. Second, due to numerical instabilities in the gradient estimation
the birth-death point that in the smooth case would have joined the co-located
critical points of f and g (see Figure 1(b)) may not be co-located. The result is
the structure in Fig. 2(a,b) with a critical point of f with valence two close to
a birth-death point. To decide between the two scenarios we use Algorithm 1.

Algorithm 1 CorrectValenceTwo

If vertex p is an extremum with valence two, traverse level sets down/up from
the maximum/minimum until, a birth-death point or saddle point is found.
if A birth-death point is found. then

Assume case (a) and connect the birth-death point to the extrema.
else

Assume case (b) and create a small loop that connects to the extrema
end if

By limiting the search for a birth-death point to the level sets around an
extremum until a saddle is found, we are guaranteed that two extrema cannot
search and find the same birth-death point to connect to itself, as the level set
of the saddle isolates the extrema from any other critical points. Assuming an
invisible loop for every valence two extremum would create a correct structure.
However, we generally find the search for birth-death points to produce a more
intuitive structure. Figure 2 shows extrema that are valence two with birth-
death points nearby. With Algorithm 1, these examples would have the nearby
birth-death point merged with the extrema.

Saddle points of f are handled slightly differently than extrema. Due to the
co-location of critical points, the detection of Jacobi edges guarantees that all
non-degenerate saddle points of f will have at least valence four, see Figure 3.
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(a) (b) (c) (d)

Figure 2: (a) A valence two minimum (blue) with multiple birth-death points nearby. (b) A
valence two maximum (red) with a birth-death point just to the left of the maximum. (c) A
valence six monkey saddle changes into two simple saddles (d) after perturbation.

During the λ sweep, if v is a saddle point of f then it has two components of
lower link at λ = −∞. The vertex v is also a minimum of g thus at λ = 0,
the vertex will be a minimum and have only one component of the upper link.
Thus in the interval λ ∈ (−∞, 0) both components of the lower link must have
collapsed and in doing so created at least two edges in the Jacobi set. During
the interval λ ∈ (0,∞), two lower links must be created returning the vertex
to a saddle at λ = ∞. Again this creates at least two edges in the Jacobi
set, thus guaranteeing valence of at least four for saddle points. From section
5.2.2 we know that when a lower link is collapsed or created the corresponding
edge will be minimal in g along the level set of f and thus is classified non-
pseudo. Furthermore, the well known level set curvature structure around a
saddle guarantees four alternating ridge and valley edges. The same results can
be extrapolated for higher order saddle points of f , where a valence of at least
2n+ 2 minimal edge is assured for saddles of order n.+

+

- +

+

-

v

+

(a) λ = −∞

+

+

+

v

++

+

(b) λ = 0

-

v

+

+

-

-

-

-

(c) λ =∞
Figure 3: Saddles must have at least valence
four. (a) At λ = −∞ there exist two compo-
nents of the lower link. (b) At λ = 0, both
lower link components have collapsed marking
two edges as in the Jacobi set. (c) At λ = ∞
two lower link components have been create
that mark at least two additional edges.

It is possible for a saddle to have
more than its proper number of Ja-
cobi edges. If during the λ-sweep a
lower link is split before it collapses,
then there will be additional edges.
From Section 5.2.2 the edge flip that
split the lower link will create a max-
imal edge. As is done with an ex-
trema of higher valence, this edge is
paired with either of its adjacent min-
imal edges, is disconnected from the
saddle, and is considered incident to
a birth-death point.

Piecewise linear functions can support higher order saddle points. A saddle
points of order n can be split into n saddles of order 1. Figure 2(c,d), show
the ridge-valley graph for the classic monkey saddle f = x2y and the resulting
ridge-valley graph when perturbed. The saddle point has been split into two
separate saddle points connected by the ridge-valley graph creating two valence
four critical points.
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5.3. Consistency of Computed RV Graphs

Definition 4.3 lists several properties of the Ridge-Valley graph for extended
Morse functions. We will show that the Ridge-Valley graph detected on a piece-
wise linear f using the above algorithm will satisfy the same properties.

1. Arcs are open, smoothly embedded 1-manifolds. The unfolding techniques
of [21, 25] will extract 1-manifolds from the edges of the Jacobi set.

2. Nodes are the critical points of f which have valence four and points at
which the Jacobi classification switches which have valence two. From the
section above, the critical points of f will have valence four or will be
corrected to valence four. All other points will have valence two.

3. Arcs have a consistent classification as (pseudo-)ridge or (pseudo-)valley.
From section 5.2.2 each edge has one classification. Arcs for the piecewise
linear RV graph are formed by sequences of edges of the same classification
and thus by definition have consistent classification.

4. At maxima/minima of f pseudo-ridges/-valleys cross ridges/valleys. All
extrema of f have valence four, and thus must have two maximal and two
minimal edges that alternate around the extrema. The level set curvature
at maxima has been set to ∞, thus all edges incident to a maximum have
positive level set curvature and are either pseudo-ridge or ridge. Thus a
maximum has two ridge and two pseudo-ridge edges that alternate around
the maximum or “cross”.

5. At saddles of f ridges and valleys cross. Saddles are incident to four
minimal edges. Level set curvature is assigned to saddles such that the
two edges in the upper link of the saddle will be ridge, and the two edges
in the lower link will be valley.

6. Discussion

The concept of the Ridge-Valley graph as a Jacobi set and the presented
algorithm for its computation has several advantages for practical applications.
While the classification of all the edges in the RV graph needs level set curva-
ture, which requires a second derivative, the actual geometry of the RV graph is
computed using only the magnitude of the gradient, a first order quantity. Us-
ing just an estimate of the gradient magnitude the RV graph can be computed
combinatorially in a provable consistent manner. As such the RV graph com-
putation does not rely on numerical calculations and is more robust compared
to the detection of height ridges, which requires second order derivatives and
eigenvalue/vector computations.

6.1. Length of Scale and Topological Simplification

Currently the methods for examining height ridges at different lengths of
scale and filtering out noise involves passing the data through a low-pass filter
[2]. A potential advantage of expressing the Ridge-Valley graph as a discrete
graph structure is that this could allow a structural simplification to filter out
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noise and create a multi-resolution representation of ridges and valleys similar
to the work done in the Morse-Smale complex [30, 31, 32]. Such an approach
could potentially allow for a more adaptable approach, such as local filtering,
as opposed to global and the ability to remove features based on user-defined
criteria. Without a topological simplification our current technique is subject
to sampling and mesh artifacts, as well as noise in the data and small scale
features. Nevertheless, unlike other techniques, the RV graph is guaranteed to
be consistent with the known mathematical structure and all ridges and valleys
are guaranteed to be 1-manifolds.

(a) (b)
Figure 4: Comparison between the analytical and computed ridge-valley graph of f =
exp[−(8(x+0.4)2 +4y2)]+exp[−8(x− .5)2−4y2]+exp[−8(x−0)2−4(y− .77)2]+exp[−8(x−
0)2− 4(y− 1.5)2] + 0.2 exp[−0.3x2− 0.3(y− .5)2]. (a) The contours of f and its RV graph are
computed and plotted in Mathematica. (b) The function f is sampled on a 301x401 resolution
regular triangle mesh and the RV graph is computed using the described algorithm.

7. Results

Figures 4, 5, and 6 show examples of the results produced by the algorithm
on analytic and practical data sets. Figure 4(a) shows the contour map and
the level set (∇f)TH(f)(R∇f) = 0 as computed by Mathematica. Figure 4(b)
shows the computed RV Graph. Qualitatively, the RV graph mirrors the level set
well, however in areas of near zero gradient (upper right and bottom center), the
lines resemble space filling curves as the discretization of the function becomes
more dominant than the function’s geometry.

Figure 5 shows an artificial terrain with the full RV graph (5(a)) , the ridges
(5(b)), and the valleys of the terrain (5(c)). Again, space-filling ridge lines are
observed where the gradient is near zero (bottom right), as well as many short,
small-scale ridges and valleys, as there is no scale space analysis.

For an example of the ridge detection on simulation data, we examine a
Finite Time Lyapunov Exponent (FTLE) field where ridges of the field are
considered Lagrangian Coherent Structures (LCS) [33, 34]. These LCS represent
material boundaries with low cross flow in the fluid. Figure 6 shows the ridges
of the RV graph for the FTLE field of fluid flow around a cylinder and the ridges
found in the RV graph. While the large scale ridges are readily found, many
small scale ridges are also detected.
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(a) (b) (c)
Figure 5: An artificial terrain constructed by superimposing random Gaussian distributions.
(a) The computed RV graph with maxima (red dots), minima (blue dots), and saddle point
(green dots) connected by arcs of ridge (red), valley (blue), pseudo-ridge (orange) and pseudo-
valley (teal). (b) The ridges of the terrain. (c) The valleys of the terrain.

8. Future Work

While these examples show encouraging results, there remain several critical
issues that need to be resolved before the presented algorithm is suitable for
analytical purposes. The most pressing issue is addressing the need for a length
of scale analysis through topological simplification as discussed in Section 6.1.
Many analyses require such capabilities and as seen in the previous section, the
algorithm currently detects many small scale ridges and valleys, often on the
order of a single triangle.

Other minor issues arise from piecewise linear nature of f and g, as the
structure of the RV graph is dependent upon the meshing procedure used. Ide-
ally, this issue is rendered insignificant by a proper simplification scheme, but
is currently an open question. The piecewise linear structure will also produce
jagged ridge lines as all ridges are found along edges of the mesh, which results
in visually unappealing ridges. However this could be remedied by applying a
constrained smoothing procedure on the lines.

Currently it is not clear that the Jacobi set definition of ridge is easily ex-
tendible to additional dimensions, unlike the height ridge definition. Jacobi sets
themselves are always one-dimensional, regardless of the dimension in which the
are embedded, so the theory will need to be extended in order to extract ridge
surfaces.

9. Summary

We have examined Jacobi ridges, a definition of ridges that is closely related
to the traditional height ridge definition, but remains invariant under mono-
tone transformation. Furthermore, we have derived the Ridge-Valley graph to
describe the global structure of Jacobi ridges for Morse functions with simple
Hessians. Finally, we show how ridges can be expressed as non-generic Jacobi
sets and use this insight to develop the first combinatorial algorithm to extract
a provably consistent RV graph from piecewise linear data. The RV graph pro-
vides insights into the global nature of ridges and the connection to Jacobi sets
promises a new framework to compute and analyze ridges. The theory of Jacobi
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Figure 6: The ridges of a Finite Time Lyapunov Exponent (FTLE) field. While the large
scale ridges are captured, many small scale ridges are present showing a need for topological
simplification.

sets shows the potential to enable the structurally correct simplification of the
RV graph without globally smoothing the data and potentially the creation of
a hierarchical RV graph in the tradition of hierarchical Morse-Smale complexes.
While the presented algorithm is not currently suitable for state of the art anal-
ysis, its combinatorial approach shows much promise for robust computation if
its current limitations are overcome.

Overall the Ridge-Valley graph opens the possibility for a greater under-
standing of the global structure of the ridges and valleys of a Morse function
and presents the opportunity to increase the robustness of ridge detection by
utilizing combinatorial algorithms that take advantage of its Jacobi set struc-
ture.
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